Frobenius splitting, point counting and degeneration

Allen Knutson, Cornell

Let $\{f = 0\}$ be a degree n hypersurface in affine *n*-space over Spec Z. From it, we can construct many other subschemes $\{Y\}$ by decomposing, intersecting, taking unions, and repeating. Then (1) init f is the product of all the variables implies (2) The number of solutions to $\{f = 0\}$ over \mathbb{F}_p is not a multiple of p implies (3) All the schemes $\{Y\}$ constructed above are reduced over \mathbb{F}_p . (If this holds for infinitely many p, e.g. if (1) holds, then reducedness also holds over the rationals.)

Moreover, if (1) holds, then each init Y is reduced, i.e. Y has a Gröbner basis with squarefree initial ideal. I'll give an example where the set of $\{Y\}$ includes matrix Schubert varieties.