Loading Events

« All Events

Modern Developments in Matroid Theory

June 8 - June 13

Recently, a number of long-standing conjectures in the field of matroid theory, and more generally in combinatorics, have been resolved by the
injection of algebraic geometry and Hodge theory into the subject. A non-exhaustive list includes Adiprasito, Huh, and Katz’s resolution of the Heron–Rota–Welsh conjecture, the proof of Dowling–Wilson’s top-heavy conjecture by Braden, Huh, Matherne, Proudfoot, and Wang, as well as the proof of Brylawski and Dawson’s conjectures by Ardila, Denham and Huh.

This June (8-13), the Oberwolfach Seminar 2524b will present these (and
related) novel developments in an approachable way to graduate students and postdocs. Participants will learn some rich and deep modern algebra, and leave equipped with an understanding of how this mathematics continues to be applied to solve a diverse range of problems. Its occasion is especially timely due to the vibrant developments the theme is currently undergoing ever since it took off in the wake of June Huh’s 2022 Fields Medal, which was awarded partly based on the
achievements noted above.

More details can be found on the workshop website

Details

Start:
June 8
End:
June 13

Leave a Reply

Your email address will not be published. Required fields are marked *